翻訳と辞書
Words near each other
・ Grünsee
・ Grünsee (Berchtesgadener Land)
・ Grünsee (Pflersch)
・ Grünsee (Zermatt)
・ Grünsfeld
・ Grünspan
・ Grünstadt
・ Grönwohld
・ Grönåsens Älgpark
・ Gröschel
・ Grössinsee
・ Grötlingbo
・ Grötlingbo Church
・ Grötzingen
・ Grötzsch graph
Grötzsch's theorem
・ Größnitz
・ Gröûp X
・ Grøa
・ Grødem
・ Grømstad-Posten
・ Grøn Koncert
・ Grøndahl
・ Grøndahl & Søn Forlag
・ Grøndal station
・ Grøndalen
・ Grøndalselva
・ Grøndalspasset
・ Grønfjelldalen
・ Grønfjellåga


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grötzsch's theorem : ウィキペディア英語版
Grötzsch's theorem

In the mathematical field of graph theory, Grötzsch's theorem is the statement that every triangle-free planar graph can be colored with only three colors. According to the four-color theorem, every graph that can be drawn in the plane without edge crossings can have its vertices colored using at most four different colors, so that the two endpoints of every edge have different colors, but according to Grötzsch's theorem only three colors are needed for planar graphs that do not contain three mutually-adjacent vertices.
==History==
The theorem is named after German mathematician Herbert Grötzsch, who published its proof in 1959.
Grötzsch's original proof was complex. attempted to simplify it but his proof was erroneous.〔.〕
derived an alternative proof from another related theorem: every planar graph with girth at least five is 3-list-colorable. However, Grötzsch's theorem itself does not extend from coloring to list coloring: there exist triangle-free planar graphs that are not 3-list-colorable.〔.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grötzsch's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.